翻訳と辞書 |
Michael selection theorem : ウィキペディア英語版 | Michael selection theorem In functional analysis, a branch of mathematics, the most popular version of the Michael selection theorem, named after Ernest Michael, states the following: : Let ''E'' be a Banach space, ''X'' a paracompact space and φ : ''X'' → ''E'' a lower hemicontinuous multivalued map with nonempty convex closed values. Then there exists a continuous selection ''f'' : ''X'' → ''E'' of φ. : Conversely, if any lower semicontinuous multimap from topological space ''X'' to a Banach space, with nonempty convex closed values admits continuous selection, then ''X'' is paracompact. This provides another characterization for paracompactness. == See also ==
* Zero-dimensional Michael selection theorem * List of selection theorems
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Michael selection theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|